Experiments on frog cardiovascular and respiratory system
Outline

• experiments on animals
 – rules and laws
 – types of experiments
 – species used
• basic frog functional anatomy
• exploring the cardiovascular and respiratory systems of the frogs
Animal experimentation - purpose

• numbers: 50 to 100 million vertebrate animals worldwide
• species: zebrafish -> primates
• sources: purpose-bred, some caught in wild
• research conducted by: universities, medical schools, pharmaceutical companies, defense establishments
• why: education, research (genetics, developmental biology, behavioral studies, biomedical research, drug testing and toxicology tests, including cosmetics testing)
Animal experimentation - Laws

- EU Directive 86/609/EEC
- Romanian laws regarding animal welfare
- university's local policy
Animal experimentation - reasoning

• virtually every medical achievement in the 20th century relies on the use of animals in some way
• even sophisticated computers are unable to model interactions between molecules, cells, tissues, organs, organisms, and the environment, making animal research necessary in many areas
• medical students:
 – appraise the tremendous knowledgebase created by means of animal testing
 – honor the possibility to learn and experiment
 – use common sense and conscience, be responsible
Animal experimentation - principles

- Animal testing should cause as little suffering to animals as possible, and animal tests should only be performed where necessary.

- **Reduction:** methods to obtain comparable levels of information from fewer animals, or to obtain more information from the same number of animals.

- **Replacement:** preferred use of non-animal methods over animal methods whenever it is possible to achieve the same scientific aim.

- **Refinement:** methods that alleviate or minimize potential pain, suffering, or distress.

 - pain
 - distress
 - immobilization
Animal experimentation - PAIN

- **Definition**: physical pain is an unpleasant feeling that typically consists of negative affect and aversion, and has location, duration, intensity and a distinctive quality (e.g., burning, stabbing).
Animal experimentation - ANESTHESIA

• Definitions:
 – condition of having sensation (including the feeling of pain) blocked or temporarily taken away
 – reversible lack of awareness
 • local (including spinal)
 • general
 – pharmacologically induced reversible state of amnesia, analgesia, loss of consciousness, loss of skeletal muscle reflexes and decreased stress response
Animal experimentation - ANESTHESIA METHODS

• pharmacological
 – local anesthetics: membrane stabilizing drugs (i.e. Na$^+$ channel blockers - Lidocaine)
 – general anesthetics: reversible loss of consciousness

• other (only for animal research)
 – decapitation (guillotine, scissors)
 • when using frogs destroying spinal cord as well
Animal experimentation –
Types of experiments

• in vivo: “within the living” (experimentation using a whole, living organism)

• in situ: “in the place” (examine the phenomenon, organ exactly in place where it occurs, i.e. without moving it to some special medium)

• in vitro: “within the glass” (outside of the living organism, in a controlled environment, such as in a test tube or Petri dish)
Outline

• experiments on animals
 – rules and laws
 – types of experiments
 – species used
• basic frog functional anatomy
• exploring the cardiovascular and respiratory systems of the frogs
1. nostrils
2. floor of the oral cavity
3. ear drum
1. vomerine teeth
2. internal nare
3. opening to the esophagus
4. Eustachian tube opening
5. vocal sac opening
6. glottis
7. underside of the tongue
1. lungs
2. heart
3. liver
4. gall blader
5. pyloric portion of stomach
6. duodenum of small intestine
7. testis
8. fat body
9. urinary bladder
 a. large intestine
 b. ileum
1. liver
2. heart
3. ovary with eggs
4. gall blader
5. duodenum of small intestine
6. pyloric portion of stomach
7. oviduct
Outline

• experiments on animals
 – rules and laws
 – types of experiments
 – species used
• basic frog functional anatomy
• exploring the cardiovascular and respiratory systems of the frogs
Experiment

• type: in vivo, in situ
• species used: frog
• anesthesia: urethane, followed by decapitation and destruction of spinal cord
Background and purpose

• frog cardiovascular and respiratory systems present several functional similarities

• purpose:
 – mucociliary clearance
 – in vivo circulation on frog tongue
 – recording the electrical and mechanical activity of the heart simultaneously
 – influences on cardiac output (thermal, chemical)
 – conduction, AV block, overdrive suppression
 – refractory period
In vivo circulation on frog tongue
- background -

• explore and identify:
 – microcirculation: arterioles, capillaries, venules
 – main vessels: arteries, veins
 – laminar flow

• artery: velocity ↑, pulsate, flow to ramifications

• vein: velocity ↓, no pulsations, flow from ramifications

• laminar flow: velocity of core > parietal velocity
In vivo circulation on frog tongue
- experimental protocol -

• i.p. anesthesia: urethane 10% 1ml/50g
• check reflexes: flip reflex, cornea reflex
• fixate frog and examine with 10x objective:
Background and purpose

• frog cardiovascular and respiratory systems present several functional similarities

• purpose:
 – mucociliary clearance
 – in vivo circulation on frog tongue
 – recording the electrical and mechanical activity of the heart simultaneously
 – influences on cardiac output (thermal, chemical)
 – conduction, AV block, overdrive suppression
 – refractory period
Mucociliary clearance
- background -

• respiratory tract is lined with ciliated epithelium on top of which is a viscous film of mucus: foreign particles and microorganisms get stuck-> transported to pharynx -> swallowed

• approximately 200 cilia/cell, 10-20 beats/sec, speed: approximately 1 cm/min
Mucociliary clearance
- experimental protocol -

• decapitation (followed by destruction of spinal cord)
• pipet Ringer’s solution with suspended charcoal particles on frog palatum durum
• observe
Background and purpose

• frog cardiovascular and respiratory systems present several functional similarities

• purpose:
 – mucociliary clearance
 – in vivo circulation on frog tongue
 – recording simultaneously the electrical and mechanical activity of the heart
 – influences on cardiac output (thermal, chemical)
 – conduction, AV block, overdrive suppression
 – refractory period
Recording the electrical and mechanical activity of the heart

Stannius I Stannius II

Stannius III

VCS

SV

A

V

VCI

Ao

BAo
Recording the electrical and mechanical activity of the heart
Recording the electrical and mechanical activity of the heart

- pacemaker
- overdrive suppression

Stannius I Stannius II
Recording the electrical and mechanical activity of the heart
Recording the electrical and mechanical activity of the heart

AP – action potential: transient alteration of the membrane potential across an excitable membrane in an excitable cell generated by the activity of voltage-gated ion channels embedded in the membrane

Δt - electromechanical coupling
Recording the electrical and mechanical activity of the heart

\[I = \frac{V}{R} \]

\[R = \frac{L}{S} \times \rho \]
Background and purpose

• frog cardiovascular and respiratory systems present several functional similarities

• purpose:
 – mucociliary clearance
 – in vivo circulation on frog tongue
 – recording simultaneously the electrical and mechanical activity of the heart
 – influences on cardiac output (thermal, chemical)
 – conduction, AV block, overdrive suppression
 – refractory period
Thermal effect

- increase in temperature: increase of frequency and contractility -> increase of cardiac output
- decrease in temperature: decrease of frequency and contractility -> decrease of cardiac output

Contractility and excitability are both dependent on enzymatic systems and such are influenced by temperature variations.
Background and purpose

• frog cardiovascular and respiratory systems present several functional similarities

• purpose:
 – mucociliary clearance
 – in vivo circulation on frog tongue
 – recording simultaneously the electrical and mechanical activity of the heart
 – influences on cardiac output (thermal, chemical)
 – conduction, AV block, overdrive suppression
 – refractory period
Stannius ligatures

ligature (constriction) placed at the junction of adjacent compartments

Stannius I Stannius II

Stannius III
Stannius ligatures

- demonstrates:
 - possibility to block electrical conduction from one compartment to other (complete, i.e. third degree AV block)
 - successive chambers possess automaticity since each may continue to beat (but in own rhythm!)
 - interruption of overdrive suppression
Stannius ligatures – possibility to use stimulator for excitation

- demonstrates:
 - external pacing
Background and purpose

• frog cardiovascular and respiratory systems present several functional similarities

• purpose:
 – mucociliary clearance
 – in vivo circulation on frog tongue
 – recording simultaneously the electrical and mechanical activity of the heart
 – influences on cardiac output (thermal, chemical)
 – conduction, AV block, overdrive suppression
 – refractory period
Recording the electrical and mechanical activity of the heart

ARP – absolute refractory period: the amount of time it takes for an excitable membrane to be ready for a second stimulus once it returns to its resting state following an excitation.